Structure of a Tetrahedral Ni^{II} Dibromo Complex with a 6,6'-Disubstituted Bipyridine

By DAVID W. EVANS,* GEORGE R. NEWKOME[†] AND FRANK R. FRONCZEK[‡]

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

(Received 26 May 1989; accepted 26 September 1989)

Ni

Br1 Br2 N1

Ō5

06 07 08 C1 C2 C3 C4 C5 C6 C7 C8 C9

C10 C11 C12 C13 C14

C15 C16 C17

C18 C19 C20

C21

C22 C1S

C2S

C3S

Abstract. Dibromo{dimethyl α, α' -bis(methoxycarbonyl)-[2,2'-bipyridine]-6,6'-dipropionate}nickel(II) hemibenzene solvate, [NiBr₂(C₂₂H₂₄N₂O₈)].0.5C₆H₆, $M_r = 702.0$, monoclinic, $P2_1/n$, a = 11.948 (2), b =15.867 (5), c = 16.277 (6) Å, $\beta = 109.83$ (2)°, V = 2902.8 Å³, Z = 4, $D_x = 1.61$ g cm⁻³, Mo K α , $\lambda =$ 0.71073 Å, $\mu = 34.43$ cm⁻¹, F(000) = 1412, T =292 K, R = 0.055 for 2880 observations with $I > \sigma(I)$ (of 5093 unique data). The crystals were obtained from the reaction of the free ligand and anhydrous NiBr₂ in dichloromethane. The planar pyridine rings [maximum deviations 0.006(7) and 0.008(6) Å. respectively] form a dihedral angle of $5.9(8)^{\circ}$, while the dihedral angle between the NiN₂ plane and NiBr₂ plane is 94.98 (14)° yielding an overall distorted tetrahedral molecular geometry. Ni-Br distances are 2.322(1) and 2.336(1) Å, and the Br-Ni-Br angle is 122.87 (4)°. The Ni-N distances are 1.981 (4) and 2.004 (4) Å. High thermal parameters exhibited by the methyl ester substituents and the solvent molecule suggest unresolved disorder. The benzene molecule lies on a center of symmetry.

Experimental. The title compound (I) was obtained as the hemibenzene solvate by slow evaporation of a dilute benzene solution of the complex, yielding purple crystals, dimensions of sample $0.12 \times 0.28 \times$ 0.32 mm. Space group from systematic absences hol with h + l odd, and 0k0 with k odd. Enraf-Nonius CAD-4 diffractometer with graphite monochromator and Mo $K\alpha$ radiation. Cell dimensions from setting

* Present address: Department of Chemistry, Presbyterian College, Clinton, SC 29325, USA.

[†] Present address: Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.

‡ To whom correspondence should be addressed.

0108-2701/90/030490-02\$03.00

angles of 25 reflections having $20 < 2\theta < 23^{\circ}$. Data collection by $\omega - 2\theta$ scans designed for $I = 50\sigma(I)$, subject to 120 s maximum scan time. Scan rates varied $0.39-4.0^{\circ}$ min⁻¹. Reflections having $1 < \theta < 25^{\circ}$, $0 \le h \le 14$, $0 \le k \le 18$, $-19 \le l \le 19$ measured, corrected for background, Lorentz and polarization effects. Absorption correction by ψ scans, minimum relative transmission 71%. Standard reflections 600, 040, 004, $\pm 2.6\%$ maximum variation. Redundant 0kl and $0k\bar{l}$ data averaged to give 5093 unique reflections, $R_{int} = 0.025$. Structure solved by heavy-atom methods, refined by full-matrix least squares based on F using data for which $I > \sigma(I)$, 2213 unobserved reflections, $w = \sigma^{-2}(F_o)$, with Enraf-Nonius SDP (Frenz & Okaya, 1980). Non-H atoms anisotropic; H

Table 1. Coordinates and equivalent isotropic thermal parameters

$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_j \cdot \mathbf{a}_j.$

~4	< ,	a a a a a a a a a a a a a a a a a a a	
x	у	Z	$B_{\rm ex}({\rm \AA}^2)$
0.63565 (6)	0.18119 (5)	0.60603 (4)	3.48 (2)
0.82153 (6)	0.24608 (5)	0.64131 (4)	5.78 (2)
0.46855 (6)	0.25011 (5)	0.61466 (4)	6.20 (2)
0.6862 (4)	0.0715 (3)	0.6652 (3)	3.3 (1)
0.6143 (4)	0.1125 (3)	0.4984 (3)	3.6 (1)
0.6578 (3)	0.1725 (3)	1.0099 (2)	4.9 (1)
0.6920 (4)	0.2581 (3)	0.9141 (2)	6.5 (1)
0.6514 (3)	-0.0138 (2)	0.9536 (2)	5.1 (1)
0.5141 (4)	0.0481 (3)	0.8405 (2)	5.6 (1)
0.8056 (4)	0.2660 (3)	0.3679 (2)	6.1 (1)
0.6373 (4)	0.2512 (4)	0.2611 (3)	10.3 (2)
0.6554 (5)	0.4285 (3)	0.3639 (3)	8.4 (2)
0.5001 (5)	0.4014 (4)	0.4051 (4)	10.7 (2)
0.7230 (5)	0.0569 (3)	0.7512 (3)	3.7 (1)
0.7701 (6)	-0·0199 (4)	0.7849 (4)	5.2 (2)
0.7805 (6)	-0.0821 (4)	0.7288 (4)	5.7 (2)
0.7419 (6)	-0.0675 (4)	0.6406 (4)	5.2 (2)
0.6939 (5)	0.0099 (3)	0.6095 (3)	3.8 (1)
0.6500 (5)	0.0322 (4)	0.5172 (3)	3.8 (1)
0.6415 (6)	-0·0261 (4)	0.4523 (4)	5.2 (2)
0.5961 (6)	0.0001 (5)	0.3668 (4)	6.4 (2)
0.5591 (6)	0.0803 (5)	0.3471 (4)	5.6 (2)
0.5692 (5)	0.1375 (4)	0.4145 (3)	4.4 (2)
0.7091 (5)	0.1308 (4)	0.8056 (3)	4.2 (2)
0.7092 (5)	0.1095 (4)	0.8969 (3)	. 3.7 (1)
0.6113 (5)	0.0443 (4)	0.8927 (3)	3.9 (1)
0.6848 (5)	0.1896 (4)	0.9394 (3)	4.0 (1)
0.5650 (6)	-0·0780 (4)	0.9533 (4)	7.3 (2)
0.6292 (6)	0.2438 (4)	1.0548 (4)	6.2 (2)
0.5313 (5)	0.2264 (5)	0.3964 (3)	5.2 (2)
0.6332 (6)	0.2883 (4)	0.4011 (3)	5.0 (2)
0.6900 (5)	0.2662 (5)	0.3344 (4)	5-4 (2)
0.5853 (6)	0.3781 (5)	0.3906 (4)	6.4 (2)
0.8681 (6)	0.2509 (6)	0.3076 (5)	9.1 (3)
0.6228 (9)	0.5161 (5)	0.3509 (6)	11.6 (4)
0.9239 (9)	0.0266 (7)	0.4198 (7)	13.6 (4)
0.9287 (7)	0.0689 (6)	0·4949 (6)	11.6 (3)
1.0006 (8)	0.0467 (7)	0.5756 (6)	13.2 (4)

© 1990 International Union of Crystallography

Table 2. Bond distances (Å), bond angles (°), and selected torsion angles (°)

Ni Ni Ni N1 N1 N2 O1 O2 O3 O3 O3 O4 O5 O5 O6 O7 O7 O8	Br1 Br2 N1 N2 C1 C5 C6 C10 C14 C16 C14 C16 C14 C13 C15 C13 C19 C21 C19 C20 C22 C20	2·336 2·322 1·981 2·004 1·3358 1·346 1·348 1·320 1·450 1·176 1·319 1·448 1·185 1·302 1·44 (1·169 1·33 (1·44 (1·18 ((1) (1) (4) (4) (6) (7) (7) (6) (7) (8) (7) (6) (8) (6) (7) (1) (6) (1) 1) (1)		C1 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C12 C12 C17 C18 C18 C15 C25	C2 C11 C3 C4 C5 C6 C7 C8 C9 C10 C17 C12 C13 C14 C18 C19 C20 C25 C35 C35	1-376 1-513 1-377 1-377 1-377 1-382 1-376 1-376 1-355 (1-396 1-481 1-524 1-524 1-524 1-546 (1-525 (1-350 (1-38) (1-38) (1-36) (1-36) (1-37) 1-377 1-382 1-376 1-375 (1-376 (1-396 1-524 1-524 1-546 (1-525 (1-525 (1-526 (1-36) (1-526 (1-36) (1-526 (1-36) (1-36) (1-36) (1-526 (1-36) (1-36) (1-36) (1-526 (1-36) (1-36) (1-36) (1-526 (1-36) (1-36) (1-36) (1-36) (1-526 (1-36) (1-36) (1-36) (1-36) (1-526 (1-36)	(8) (8) (9) (8) (8) (7) (8) (8) (7) (9) (9) (8) (8) (8) (8) (8) (9) 1) 1) 1) 2) 2) 1)	
Br1 Br1 Br2 N1 Ni C1 Ni C1 C1 C1 C1 C1 C1 C2 C3 N1 N1 C2 C3 N1 N1 C2 C3 N1 N1 C2 C3 N1 N1 C2 C3 N1 N1 C2 C3 N1 N1 N2 C2 C3 N1 N1 N2 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni N	$\begin{array}{c} Br2 \\ N1 \\ N2 \\ N1 \\ N2 \\ N2 \\ C1 \\ C5 \\ C5 \\ C6 \\ C10 \\ C1$	$\begin{array}{c} 122.87\ (4)\\ 99.2\ (1)\\ 1064\ (1)\\ 120.7\ (1)\\ 116.9\ (1)\\ 82.8\ (2)\\ 126.8\ (2)\\ 126.8\ (2)\\ 120.0\ (4)\\ 112.7\ (3)\\ 122.0\ (4)\\ 112.7\ (3)\\ 127.9\ (4)\\ 112.7\ (3)\\ 112.7\ (3)\\ 114.5\ (4)\\ 117.3\ (7)\\ 121.0\ (5)\\ 114.4\ (4)\\ 114.4\ (4)\\ 124.4\ (5)\\ 119.2\ (5)\\ 119.2\ (5)\\ 119.2\ (5)\\ 119.2\ (5)\\ 119.1\ (6)\\ 123.7\ (5)\\ 123.7\ (5)\\ 123.7\ (5)\\ 123.7\ (5)\\ 123.7\ (5)\\ 123.9\ (7)\\ 110.1\ (6)\\ 125.9\ (7)\\ 100.1\ (6)\ (7)\\ 100.1\ (6)\ (7)\\ 100.1\ (6)\ (7)\ (7)\ (7)\\ 100.1\ (6)\ (7)\ (7)\ (7)\ (7)\ (7)\ (7)\ (7)\ (7$		N2 N2 C5 C6 C7 C8 N2 C9 C11 C11 C11 C11 C11 C11 C13 O3 O4 O1 O1 O2 C10 C17 C17 C17 C17 C17 C17 C17 C17 C17 C17	C6 C6 C7 C8 C9 C10 C10 C10 C10 C12 C12 C12 C12 C12 C13 C13 C13 C13 C14 C14 C14 C14 C17 C18 C18 C18 C19 C19 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	$\begin{array}{c} C5\\ C7\\ C7\\ C8\\ C9\\ C9\\ C10\\ C9\\ C17\\ C17\\ C17\\ C12\\ C13\\ C14\\ C44\\ O4\\ C12\\ C12\\ C12\\ C12\\ C12\\ C12\\ C12\\ C12$	$\begin{array}{c} 116\cdot 1 \ (5) \\ 121\cdot 6 \ (5) \\ 122\cdot 3 \ (5) \\ 122\cdot 3 \ (5) \\ 120\cdot 6 \ (6) \\ 120\cdot 6 \ (6) \\ 120\cdot 2 \ (6) \\ 120\cdot 2 \ (6) \\ 121\cdot 6 \ (5) \\ 110\cdot 8 \ (4) \\ 108\cdot 7 \ (5) \\ 126\cdot 3 \ (6) \\ 122\cdot 2 \ (6) \\ 111\cdot 4 \ (5) \\ 124\cdot 2 \ (6) \\ 114\cdot 4 \ (5) \\ 124\cdot 2 \ (6) \\ 114\cdot 4 \ (5) \\ 109\cdot 2 \ (6) \\ 122\cdot 4 \ (6) \\ 122\cdot 4 \ (6) \\ 123\cdot 7 \ (7) \\ 109\cdot 2 \ (6) \\ 123\cdot 7 \ (7) \\ 119\cdot 9 \ (4) \\ 122\cdot 8 \ (9) \\ 115\cdot 9 \ (9) \end{array}$	
N2 Ni Ni C16 C15 C21 C22 N1	Ni Ni N1 01 03 05 07 C1 C5	N1 N2 C5 C6 C14 C13 C19 C20 C11 C6	C5 C6 C5 C12 C12 C18 C18 C18 C12 N2	$\begin{array}{c} 6\cdot3 (4) \\ -4\cdot1 (4) \\ -7\cdot4 (6) \\ 1\cdot3 (6) \\ -178\cdot3 (5) \\ -179\cdot4 (5) \\ -176\cdot2 (6) \\ -179\cdot9 (6) \\ 160\cdot1 (5) \\ 4\cdot1 (8) \end{array}$	N2 C1 C11 C11 C13 C10 C10 C17 C17	C10 C11 C12 C12 C12 C12 C17 C17 C17 C18 C18	C17 C12 C12 C13 C14 C14 C18 C18 C18 C19 C20	C18 C13 C14 O3 O1 O2 C19 C20 O5 O7	$\begin{array}{c} 83.2 (7) \\ -56.2 (7) \\ -175.6 (5) \\ 137.2 (5) \\ 166.1 (5) \\ -136.4 (6) \\ 61.3 (6) \\ -174.2 (5) \\ -133.1 (6) \\ -158.2 (5) \end{array}$

Fig. 1. The molecular structure of (I), with thermal ellipsoids drawn at the 40% probability level, and H atoms omitted.

Fig. 2. Stereoview of the unit cell.

atoms were located in difference maps and included as fixed contributions with C—H 0.95 Å and B = 1.3 $\times B_{eq}$ for the bonded C atom. Solvent H atoms were ignored. Atomic scattering factors of Cromer & Waber (1974), anomalous coefficients of Cromer (1974). Final R = 0.055, wR = 0.041, S = 1.646 for 344 variables, extinction coefficient g = 8.2 (9) $\times 10^{-8}$ where the correction factor $(1 + gI_c)^{-1}$ was applied to F_c , maximum shift in final cycle 0.11σ , maximum residual density 0.39, minimum $-0.32 \text{ e} \text{ Å}^{-3}$. Atomic coordinates and equivalent isotropic thermal parameters are given in Table 1,* bond distances, angles, and selected torsion angles in Table 2. Fig. 1 shows the atom-numbering scheme, Fig. 2 illustrates the molecular packing.

Related literature. Crystal structures of (2,2'-biquinolyl)dibromonickel(II) and (2,9-dimethyl-4,7diphenyl-1,10-phenanthroline)diiodonickel(II), which also contain tetrahedral Ni^{II}: Butcher & Sinn (1977); crystal structure of the PdCl₂ complex of the analogous phenanthroline ligand: Fronczek, Kahwa, Lu, Newkome, Ollino, Pitts, Sittattrakul, Wang & Watkins (1988).

* Lists of H-atom coordinates, anisotropic thermal parameters, least-squares planes, and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52321 (32 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

BUTCHER, R. J. & SINN, E. (1977). Inorg. Chem. 16, 2334-2343.

- CROMER, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- FRENZ, B. A. & OKAYA, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- FRONCZEK, F. R., KAHWA, I., LU, S., NEWKOME, G. R., OLLINO, M. A., PITTS, W. D., SITTATTRAKUL, A., WANG, J.-C. & WATKINS, S. F. (1988). Acta Cryst. C44, 933-934.